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In a brief communication [ 1 I, the author presented a mathematical model 
which was intended for describing the motion of soil-type media. In this 
paper a detailed evaluation of this model is given. including the related 
thermodynamic problems. 

Soil is a disperse medium - a mixture of mineral particles. water and 
air. The mineral particles form a porous skeleton (usually cemented to- 
gether), the pores of which are filled with water and air. If the soil is 
subjected to relatively small loads, the rigidity of the skeleton is 
sufficient to resist those loads, the medium will behave as an elastic 
one and its deformations and motions can be described by a model of a 
linear-elastic Hookean body. With increasing load, the skeleton will 
gradually break up, the mineral particles will become more compact (there 
will be a decrease in porosity) and an increasing fraction of the load 
will be borne by the water and the air; further increase in load will 
lead to fracture not only of the weaker cementing bonds but also of the 
basic mineral particles of the skeleton. Under these conditions the 
Hookean model will become inapplicable and will have to be replaced by a 
new one. In constructing such a model it is necessary to see that it re- 
duces at small loads to a Hookean model, while at high loads the proper- 
ties of the medium associated with the above-mentioned processes should 
be taken fully into consideration. In the first instance it is necessary 
to consider the obvious fact that although, on increasing the stresses 
which compress a small element of the soil, the density of an element 
may increase appreciably due to recompacting of the particles and their 
fracture, the density will decrease only insignificantly when the load is 
removed, in view of the irreversibility of the processes of recompacting 
and fracture. Therefore, the process of loading and unloading of an ele- 
ment should be described by different relations. 

Furthermore, in the fractured soil skeleton the bonds between 
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individual particles are basically reduced to their mutual contacts and 
the force interactions are represented by mutual compression and friction 
at the points of contact. Therefore, the magnitude of the final mutual 

displacement of the particles cannot influence the resulting stresses 
(in contrast. for instance, to materials of the rubber type in which the 

final deformations determine the stresses). i.e. the components of the 
stress tensor should not depend on the final shear deformations. The 
stresses should be related to the deformations of the instantaneous 
state, i.e. to the tensor of the rates of deformation. In addition, this 
relation should conserve the important property of dry friction, by 
means of which the force interaction is realized between the mineral 
particles in the case of moderate humidity. This property consists 
essentially in the uniformity of the law of dry friction as a function 
of time. This, for instance, is not the property of the relation between 
stresses and deformation rates in the model of a viscous Newtonian liquid. 
The relations pertaining to the theory of flow and plasticity of metals 
do have such a property. 

Finally, in the formation of the components of the stress tensor there 

will be not only dry friction forces between the mineral particles in 
contact but also the forces of elasticity which occur inside the particles 
themselves. Therefore, generally speaking, the elastic components have 
to be taken into consideration in the relation between the components of 
the stress tensors and the strain rates. 

Such considerations have been made in the Prandtl-Reuss plasticity 
theory [2,3 I, the viewpoint 0.f which is utilized for describing the 
plastic shear deformation. 

It can be assumed that in an isotropic medium the character of the 
volume deformation is determined by the mean stress (or by the hydro- 
static pressure as it is referred to in the theory of solid bodies; 
thereby, the magnitude of the volume deformation is determined by the 
change in density of the medium. Therefore, as a first hypothesis, we 
apply the assumption of the existence of correspondence between the mean 

stress (pressure) p = - 1/3(uxx + uyy + ozz) and the density p which is, 
however, different for cases in which an irreversible change in volume 
occurs with increasing p, i.e. there is a plastic volume deformation, 
and in which the change in volume is reversible, i.e. the volume deforma- 
tion proceeds elastically. This is the most important difference between 
the present model of the medium and the models of various plasticity 
theories in which the volume deformation is always assumed as being 
elastic (reversible) if it is not assumed to be completely absent [2-4 1. 
This is due to the fact that dense non-porous materials (primarily 
metals), for which the plasticity theories have been evolved, do not 
show any appreciable non-reversible volume deformations, while for soils 
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the ability to undergo such deformations is very characteristic, due to 
their disperse structure. Furthermore, they are easily susceptible to 
irreversible shear deformations, and in this respect they do not differ 
in principle from metals. 

1. Basic hypothesis and the complete system of mechanical 
equations. It is assumed that if an element of the medium is subjected 

to irreversible changes in volume, the following equation will be valid 

for interrelating the pressure with density: 

P = II (PI (1.1) 

Irreversible changes in density (volume) will occur only on loading; 

it will therefore be assumed that Equation (1.1) is valid only if the 

necessary condition dp/dt > 0 is fulfilled. If, after a certain stage of 

increase in p, for which an irreversible volume-change took place, the 

pressure in the particle begins to drop, and after some such drop the 

pressure may increase without reaching the initial value which was 

reached during the irreversible deformation, so that the change in volume 

proceeds reversibly, the relation between the pressure and the density 

for this process is determined by another equation 

P=/z(P, P,> (1.2) 

In this relation the maximum pressure p, to which the particular 
particle was exposed during the previous irreversible change in volume 

will be contained as a parameter. By means of Equation (1.1) the density 

P *, which corresponds to p,, can be introduced: 

P, - fl (P") (1.3) 
and instead of p, the parameter p, can be introduced in Equation (1.2). 

For the given particle, the parameter p, as well as p, can only increase, 

and this will take place only in the case of irreversible volume de- 

formation; in the case of elastic changes in volume, the particles p 

ad P will not change. Therefore, p (or p ) can be considered as a* 

paramlter characterizing the residua? (irre:ersible) volume deformation. 

The experiments [5 I and simple intuitive considerations indicate 

that qualitatively the functions fl and fZ are of the form as shown in 
Fig. 1. 

Figure 2 shows the same graph in the plane p, V = l/p. In accordance 
with what was said in the introduction, the function (1.1) should have 
a initial elastic section in the range of small p-values. In the case of 

unloading from any point p*, p, a reversible change in volume takes place 
on the curve (1.31, and the point which depicts this process is displaced 
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Fig. 1. Fig. 2. 

along the curve (1.2). ‘lhis point can drop only to the position pO, pa, 
which corresponds to such a state of the element when it can no longer 
withstand the tensile stresses from all sides and loosens. lhe aggregate 
of such states in Figs. 1 and 2 is shown by the dashed lines, the equa- 
tion of which can be written as 

PO = rp (PO) (1.41 

This relation establishes the dependence of the loosening pressure on 

the density at which loosening takes place. Both these quantities sre 

obviously determined by the degree of irreversible volume deformation, 

i.e. by the parameter p, (or p,). If the medium has no bonds, then 

p,, E 0. Since in a medium which in the initial natural state is bonded, 
the skeleton disintegrates gradually during the process of irreversible 

deformation and the bond decreases, with increasing p,, i.e. pa, the 

absolute value pO should decrease. From a certain value p,, (i.e. p, on- 
wards) it can revert to zero and remain zero for all larger values of pa 

(p*). This will correspond to a total loss of the bond in the case of 

considerable irreversible volume deformation. 

In the case of very high pressures, the porosity of the medium may be 

completely eliminated, and the material will compress without any 

appreciable irreversible volume deformation in the same way as metals 

and non-porous rocks do. 'lherefore, it is necessary to take into con- 

sideration that p, and p, are bounded from above by certain limiting 

values P, -9 P, oo; once these limits are reached, Equations (1.1) and 
(2.2) coincide, and the entire volume deformation will become a revers- 

ible quantity. Thus, the multitude of states on the plane p’p (or p, V), 

which are cormected by reversible changes, is depicted by a region which 
is bounded from above and from the left by the curve (1.3), from below 

by the curve (1.4) and from the right by the curve (1.2) for the value 
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of the parameter p, = p, ~. In the case that p, (or p,) are constant, 
the reversible changes of state in this range occur along lines of a 
single parameter family, which is determined by relation (1.2), the para- 
meter on the lines of the family is p, (or p, ). Outside this region re- 
versible changes of state may occur in the case of p > p,, along the 
extension of the line p, = p, oo, which coincides with a line (1.3) for 
the case that p > p,, . 

To simplify dealing with the fairly complicated properties of the 
volume deformation of the medium described above, which is particularly 
important for the numerical solution of problems, we will give a well- 
defined analytical representation of these properties. The relations 
which follow accomplish this aim. 

In the first instance, instead of (l.l), (1.2) and (1.3), we write 

p = f(P, P,> e CP - PO) e (P* - PL P, = I (P.7 P*> = fl (PA 

PO = f (PO, P*> (1.5) 

Furthermore, from Equations (1.4) and (1.5) we obtain 

I (PO, P,) = ‘P (PO) or PO = Y(P*) < P, (1.6) 

Finally, the condition that an irreversible volume deformation takes 
place only with increasing p, is expressed by 

dp. = $e(p-p*) e (3) 
dt 

(1.7) 

In this case, the operator d/dt denotes the total time derivative. The 
function e(u) in Equations (1.5) and (1.7) is a unit function: 

(1.8) 

It is obvious that, owing to relations (1.5) to (1.8), only reversible 

volume deformation 6, = const) will occur in the case of p0 < p < p,, 

and only in the case of p = p, and dp /dt > 0 will a part of the volume 
deformation proceed irreversibly (dp* > 0). 

It is pointed out that while the changes in p, can, generally speak- 
ing, be considerable, the changes in density in the case of purely re- 
versible volume deformation can be small, since these are determined by 
the elastic deformation of the mineral particles and the water, which is 
insignificant. Therefore, it is valid to assume that 

P* - POSP. (1.9) 
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This condition is essential in the sequel. 

Passing to the analytical description of the shear deformation in the 
proposed model, it may be mentioned that we will formulate relations 
which in principle are apparently the most simple ones, but still in- 
corporate all the qualitative features of shear deformations in the soil 
described at the beginning of the paper. 

In spite of this they are mathematically very complicated. Particular- 
ly, following the basic ideas of the theory of Prandtl-Reuss, we shall 
assume that under conditions when the shear defo~ation cannot proceed 
purely elastically, a part of the infinitesimally small shear deforma- 
tion of the instantaneous state of the element will become plastic (irre- 
versible) and proportional to the deviator of the stress tensor. ‘Ihis 
occurs under the condition that this deviator differs from zero in a de- 
finite sense (which causes the irreversible shear deformation), whereby, 
generally speaking, the magnitude of this deviation, at which plastic 
deformation starts to occur, will depend on pressure. 

lbe latter condition is analytically expressed in the form of a 
certain relation (plasticity condition), which is taken in the form of 
the dependence of the second invariant of this deviator on p 

F is a non-decreasing function of its argument. 

The form of the plasticity condition (1.10) in the proposed model also 
differs from that pertaining to the model of the theory of plasticity of 
metals in which J2 is assumed either constant during plastic deformation 
(ideal plasticity) or as depending on the characteristics of plastic de- 
form&ion (hardening). Equation (1.10) is a condition of the type per- 
taining to ideal plasticity, in which the plasticity limit depends on 
the first invariant of the stress tensor, i.e. the pressure p. This is 
the Mises-Schleicher-type condition f3,4,6 I. 

In the theory of the limiting equilibrium of loose granular media and 
soils [ 7,8 1, in which, generally, only the two-dimensional problem is 
considered, the condition of limiting euuilibrium,i.e. the condition oe 
plasticity, is taken as the Coulomb friction law or, more generally, the 
failure condition of Nohr which interrelates the normal and the shear 

stresses at the slip planes. These conditions, which are convenient in 
the case of the plane problem of limiting equilibrium, are unsuitable 
for the general three-dimensional case in view of the complexity of the 
analytical representation. Therefore, the analyt fcalls simpler re lat fon 
(1.10) is proposed, which is of the same aechanical nature as the 
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Coulomb-Mobr condition and can be considered as being an approximation 
of this. In this case we follow von Mises, who in the theory of plasti- 
city of metals substituted for Tresca’s flow condition the simpler (Mises) 
condition, which in many cases is in better agreement with experimental 
data than the Tresca condition [2,3 1 ~ 

The correct description of the elastic part of an infinitesimally 
small deformation of the instantaneous state in the case that consider- 
able deformations are possible encounters great difficulties; these are 
due to the fact that, on the one hand, the plastic as well as elastic 
components of the infinitesimally small deformation of the instantaneous 
state are expressed by the tensor of the deformation rates and, on the 
other hand, the elastic law links the stress tensor with the tensor of 
the elastic deformations themselves and not their rates. Therefore, to 
write unified relations which link the stresses with the strain rates, 
it is necessary to write the elasticity law in the differential form. 
This applies to the case of developed flow when the total deformations 
and displacements are not small and the state, relative to which the 
elastic-deformation components are considered, changes appreciably and 
continuously, representing a non-trivial problem. 

In particular, there is difficulty in determining the rates of change 
of the stresses which should be used in the elastic law written in differ- 
ential form. Recently, W. Prager drew attention to these problems; in a 
paper presented at the All-Union Congress on Mechanics he subjected to a 
comparative analysis various published definitions of the rates of change 
with time of the stress tensor and pointed out certain advantages of the 
definition according to Jaumann [ 9 I . Work by Sedov [ 10 I, carried out 
in connection with the above paper. deals with the problem of differen- 
tiating tensors with respect to time in a general treatment of the theory 
of finite deformations. In the light of these concepts, the elastic de- 
formations in the flow relations were taken into account incorrectly in 
our earlier work [ 1 I, and this inaccuracy is eliminated in this paper. 

For describing the elastic shear deformation, Jaumann’s definition 
of the time derivative of the stress deviator tensor [9 1 will be used. 
‘lhis leads to the following relations between the components of the 
stress deviator tensor and the strain deviator tensor: 

G (eij - +- e,,dij) = 2 -/- hS,, i 
hi avj 

% = dzj f a”i (1.11) 

where G is the shear modulus and 
according to Jaumann by means of 

ZS.. dS.. 
13 *I = 

dt dt 
- SikQzjk. - 

the derivatives ~ij/dt are determined 
the formula 

SikQik 7 

hi 
252ij = F - 2 (1.12) 

3 
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‘Ihe quantity X should be positive when plastic shear deformation 

occurs and it should be identically zero in the case of elastic shear. 

Thus, relations (1.11) for X E 0 should be considered as the definition 

of the elastic law of the given model. It can easily be shown that in 

the case of small displacements and deformations this definition reduces 

to the ordinary Hooke's law. 

As usual, the factor X can be eliminated by means of the plasticity 

condition (1.10). For this 'purpose we multiply (1.11) by Sii and take 

the sum 

2GW' EE GSii("ij-$ck,6ij! 
xs.. 

= GSijeij = Sij 2 + hSijSij (1.13) 

It can be shown that 

23.. 
Sij + = sijf& dt 1 d (‘ij’ij) _ 2 

(2.14) 

Therefore, (1.13) and (1.14), taking into consideration (l.lO), yield 

for X 

h= 2cw--'(p)dp/dt 
2F (P) 

(1.15) 

Equation (1.15) will be valid only for the case that J, = F(p) and 

provided that h > 0, i.e. for 2'GW- F’(p)dp/dt m> 0. If these conditions 
are not fulfilled, then X = 0. 

In the same way as above, all these properties of the parameter X can 

and should be expressed by means of the single analytical expression 

A = 2GW---‘(p)dpldt 
2F (P) 

e [Ja--(p)le[2GW -F'(p)%] (1.16) 

where e(u) is the unit function (1.8). Thus, relations (1.111, (1.12) 

and (1.16) give a complete description of the shear deformation. 

These relations, together with (1.5) to (1.81, the equations of motion 

p$_ = pFi’-_!2++ (i = 1, 2, 3) 
i 

and the continuity equation 

dp hi 

dt -+pz=o 
2 

(1.17) 

(1.18) 

form a complete closed system of the mechanical equations of the pro- 

posed model. 
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In analogy with the model of the viscous incompressible liquid, the 
models of the theory of plasticity and some others, the closed system of 
equations has been obtained without using the law of energy conservation. 
‘lhe problem of how the energy equations are written in such cases and, 
generally, what thermodynamic relations correspond to models of such a 
type is considered in another paper 111 1. 

2. 'Ihermodynamics of the medium and the energy equations. 
'Ihe equation of the heat inflow can be written in the general case as 
follows [12 I : 

SQ de I 
r = p dt - T Gijeij (2.1) 

where the quantity on the left-hand side of the equation represents the 
external heat inflow to the unit of volume per unit of time and c is the 
internal energy per unit of mass of the medium. By using relations (l.lO), 
(l.ll), (1.13), (1.14) and (1.16), Equation (2.1) can be written as 

Dividing Equation (2.2) by p and using relations (1.11) and (1.18), 
we obtain 

rle 1 SQ d (1 i PI 1 dJ2 -=_-- 
rlt p 6t p dt 

+_-_f 
2Gp dt 

Ihe quantity V e will now be introduced on the basis of the formula 

V, = I/, -I/‘, v, = v, (V,) (V = 1 /P, Ire = 1 IP,) (2.4) 

where V, is the specific volume at the point of intersection of the curve 
of the elastic volume change with the axis of specific volumes (Fig. 2). 
Since, as a result of Equation (1.7), p <p,, i.e. V > V, and, further- 

more, p rpo, i.e. V < V,, the following inequalities will be valid for 
ve: 

C-K&V,,<V,-V, (2.5) 

Furthermore, from Equations (2.4) and (1.7) it follows that 
dk 
“=A%[- 
dt (2.6) 
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ind, consequently, in the case of purely reversible volume changes, 
dVe/dt = - dV/dt. Finally, due to Equation (1.9) 

Fe<F., F,==:F/‘, (2.7) 

By using the latter, it is possible to substitute V, for V in Equa- 

tion (2.3) for all cases when l/p = V, if quantities of the order of 

(V, - F* WV*, which are small compared to unity, are neglected. As a 
result, this equation can be written as 

dE r SQ dV V, dJz 
dt =~‘*~-Pp++~+ 

+v.[W-_~F’(P)~]eIJ,-F(P)le[W-_~~(P)~] (2.8) 

We will now determine the system of the thermodynamic parameters of 
state and the form of the thermodynamic functions of state. Let us con- 
sider at first for this purpose the reversible process. In this case 
dV*/dt = 0, the last term on the right-hand side of (2.8 1 is also zero 
and, in accordance with the second law of thermodynamics, the external 
heat inflow per unit of mass, V,SQ/S t , can be expressed by T dS/dt, 
where S is entropy per unit of mass and T the absplute temperature of 
the element. ‘Ihus, the equation of heat inflow (2.8) for the reversible 
process is transformed into the following thermodynamic identity: 

de= TdS+pdV, -/- $dJ, (2.9) 

This relation indicates that the values T, V,, J, have to be taken 
state parameters for the reversible process. Furthermore, the thermo- 
dynamic functions may finally depend on a simple parameter (but not a 
parameter of state! 1 i.e. on the quantity V, [ 11 I . ‘lhe conditions of 
integrability of CIS lead to the necessity of fulfilling the following 
relations: 

as 

T J * I 

lhe most general model for the considered parameters of state is ob- 
tained if the pressure p, 

‘y,, J2 = (&/c~T)~ 
shear modulus G and the specific heat 

52’ 
with V, and J, constant, are given in the 

form of functions of’ihe arguments T, V,, J,, which satisfy only condi- 
tions (2.101 but are otherwise arbitrary. Particularly, using the well- 
known dependence 
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P = P(T, Ve, J,; V.) 

we obtain, by taking into consideration (2.10) 

(2.11) 

(2.q 

Vt? 
V 

-2-z - v* 2G S( ) $~ T, veK? + 2G,U’, Jz; V*) 
0 

cv,, Jz=-~ [T(&,, JtVe+ S’[& ($)lve, J$]+ci7e. J, (T;V*) (2.13) 
0 0 

where G, and CF 
52 

are arbitrary functions of their arguments and may 

depend on the pkxneter V,. 

From these relations, the internal energy and the entropy can be de- 
termined by integration: 

v, 

(2.14) 

Here c,, and S, are, generally speaking, arbitrary functions of the 
parameter V*, which is not a thermodynamic parameter of state since it 
does not change in the case of reversible processes. Determination of 
the form of these functions is associated with the study of the mechanism 
of irreversible micro-processes in the medium [ll 1. For computing the 
first integral in (2.15), which for brevity is written in symbolic nota- 
tion, it is necessary to apply relation (2.10). From the known formulas, 
having available (2.14) and (2.15), expressions can be obtained for the 
remaining thermodynamic functions. 

The expressions obtained for the equations of state (2.11) and (2.12), 
the specific heat (2.13), the internal energy and the entropy (2.14) and 
(2.151, depend on V. as a parameter, i.e. on the degree of plastic volume 
deformation. In the course of plastic volume deformation, the paramter 

V. will decrease and the process will be thermodynamically irreversible. 
The irreversibility will also take place in the case of shear deformation 
if h > 0, and also as a result of heat conduction in the medium. In order 
to obtain the thermodynamic relations necessary for describing these 
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processes, we will proceed in the same way as in the examples considered 
in earlier work [ll 1. The basic thermodynamic assumptions consist in 
the fact that all the thermodynamic relations written above remain valid 
also for irreversible processes, However, while in writing the thermo- 
dynamic equations (2.9) and (2.10) the parameter V is assumed constant. 
in substituting Equations (2.11) to (2.15) into thg equations describing 
the processes in presence of irreversibility, it is necessary to take 
into consideration the changes (the decrease) in the parameter 9, which 

is determined by the differential equation (1.7). 

The correspondence of this assumption with reality can in the final 
analysis be determined only by experiment. 

A simple particular case described by the above thermodynamic rela- 
tions, correspondin, = to the mechanical model evolved in the first section 
of the paper, is obtained by assuming, in addition to the hypotheses 
which follow from (1.5) on the independence of the pressure p on T and 
J,, the independence of the shear modulus G on T and J,. In this case it 
follows from (2.12) that G does not depend on V, either, and it follows 
from (2.13) that the specific heat depends only on T and V*; consequently, 
all the specific heats will mutually coincide and the coefficient of 

thermal expansion will equal zero Ill I . Formulas (2.14) and (2.15) will 
change to 

V, T * 

S= s p (6; ff*) dve + z$,) Js + I C CC v.) dT + q, (V,) (2.16) 

0 
0 

s=\ ’ ’ (T$v*) dT + So (V,) (2.17) 
0 

Thus, the full model proved to be a model with separable energy, 
whereby the entropy depends only on the temperature and V*, which is in 
complete analogy to the case of an ordinary plastic medium El1 I. 

By substituting the equation for E (2.16) into Equation (2.8) and 
assuming for the external heat flow the law 

(2.18) 

where K is the coefficient of heat conduction, and using (2.6) and (1.71, 
we obtain finally the equation for the heat inflow, applicable to the 

model under consideration, in the form 

(2.19) 
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This equation serves for determining the temperature distribution, 
after solving the mechanical problem. On the right-hand side its first 
term determines the heat inflow associated with heat conduction. The 
second term determines the heat inflow associated with the dissipation 
of the mechanical energy, caused by irreversible volume deformation. This 
heat inflow equals the excess work of pressure on the plastic volume de- 
fo~ation over the work spent on irreversible changes in the internal 
energy in changing the parameter V . In the same way as in the earlier 
work Cl1 3, it can be shown that t$is excess must not be negative. Final- 
ly, the third term determines the heat inflow which is associated with 
the dissipation of the mechanical energy due to plastic shear deformation. 
This quantity will always be nonnegative. All this, together with the 
natural condition (a S/a V* )(dVJdt ) > 0, in the same way as in the 
earlier work [ll 3, is in accordance with the requirements of the second 
law of thermodynamics that there will be no decrease in the entropy of 
any thermally insulated material volume of the medium. 

3. Character of the d~ss~~a~~~n in I% l~edlue and its represea~a~io~ 

by a model. The model of the medium evolved in the previous sections con- 
tains a dissipation mechanism which realizes the transformation of 
mechanical energy into heat. The mechanical energy losses in this model 
can occur, on the one hand, during plastic volume deformation, i.e. when 
the parameter p changes. Thereby, a part of the work performed by the 
compression forges to achieve volume deformation is transformed into heat 
(the second term on the right-hand side of Equation (2.19)). On the other 
hand, they will occur if there is plastic shear deformation, i.e. if 
x > 0. Thereby, a part of the work of the shear stresses to achieve shear 
deformations will be transformed into heat (third term on the right-hand 
side of Equation (2.19)). 

Swing to the particular structure of the basic relations of the model, 
which consists in their uniformity with the progress of time, the dissipa- 
tion in the medium possesses properties of dry friction. Therefore, in a 
certain sense, the character of the motion of the medium does not depend 
on the velocity. To obtain a more accurate expression for what was said 
above, it is necessary to consider two types of motions: the first, 
motions in which accelerations in the equations of motion can be dis- 
regarded, and the second, motions in which the accelerations are essential 
(dynamic problems ). 

It can easily be verified that in the first case, in the absence of 
body forces (Fie = O), the complete system of mechanical relations (but 
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not the energy equation (2.19)) is invariant relative to the group of 
transformations (3.1) 

vi’ = kv+, [ 6 (t), p’ = p, 9’ = 9, 9,’ = 9, 9 Sij’ = ,‘$ij’ Xi’ = kXi. t’ = cp (tj 

where d(t) is an arbitrary monotonically increasing function and k is an 
arbitrary positive constant (in the presence of body forces the invari- 
ance will apply in the case k = 1). This means that, for the indicated 
class of motions of the given model, the time as such is unimportant, 

the character of the motion does not depend on the speed of its evolu- 
tion, i.e. on the velocity of the process. In this respect the model is 

fully similar to the models of the theory of flow in plasticity [ 2-4 1. 
It is obvious that not every model of a continuous medium in which the 
stresses are associated with the deformation rates possesses this pro- 
perty. For instance, the Newtonian model of a viscous liquid does not 
have this property; for the motions of a viscous medium the velocity of 
the process is a very considerable factor in the determination of the 
character of such motions. 

It should be pointed out that for the case under consideration the 
energy equations (2.19) are, generally speaking, not invariant relative 
to the group (3.1). If, however, the velocities of the phenomena are 
such that the terms associated with the thermal conductivity of the 
medium in Equation (2.19) can be disregarded, this invariance will be 
maintained, i.e. the relation 

T’= T (3.2) 

will supplement relation (3.1). 

For a second class of motion, the complete system of mechanical re- 
lations in the absence of body forces is invariant only relative to the 
sub-group of similarity with respect to time and space of the group 
(3.1). corresponding to the particular form of the function 4(t) = kt 

Vi’ = vi, p’ = p, p’ = p, p* ’ = p., Sij’ = Sij, xi’ = kxi, t’ = kt (3.3) 

In this case too, the energy equation will not be invariant, due to 
the presence in it of terms which are associated with heat conduction. 
If these terms can be disregarded, the energy equation will also be in- 
variant and (3.2) can supplement relations (3.3). 

In the given case the invariance of the equations relative to (3.3) 
only allows the statement that the geometrically similar motions, i.e. 
motions in which the characteristics of the boundary and initial condi- 
tions are geometrically similar, will be similar also throughout the 
same medium on fulfilling certain simple supplementary similarity condi- 
tions. 
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To elucidate this a simple example is considered. Let us assume that 

in a space filled with the medium under consideration, which is at rest 

and homogeneous, there will be a detonation of an explosive charge of a 

spherical shape. It is required to determine the ensuing motion of the 

medium. In the given problem the functions sought are the radial velo- 

city v of the particles of the medium, the two principal stresses uy and 

ag and the densities p and p . They will depend on the radial coordinate 

r, the time t and the parameters: pl, u 
‘1 

=Of3 = 
1 

- p1 (which are 

initially given), r,, the radius of the charge, p. the density of the 

charge substance, q the quantity of heat released during combustion per 

unit mass of the charge, y the adiabatic index of the detonation pro- 

ducts of the charge and also a series of parameters pi, Ki with dimen- 

sions of density and stress, which enter into the basic relations of the 

model*. It is assumed that body forces are absent. Without solving the 

problem, on the basis of dimensional analysis, it can be established 

that the dependence of the sought functions on the system of their vari- 

ables and of the constant arguments can be written as 

(3.4) 

where V, & so, R, R. are dimensionless functions of dimensionless argu- 

ments, which are written out only for V. It follows from Equations (3.4) 

that for the similarity of two motions occurring in one and the same 

medium due to two different charges, it is necessary that both charges 

are made of the same material (or materials with equal p,,, q, y) and 

that the initial pressures and the density in the medium pl, p1 should 

be equal in both cases. In this case the functions V, xr, zo, R, R1 will 

coincide for both motions and at geometrically similar points, i.e. at 

points whose coordinates are connected by the relation r2 = r1r20/r1,, I 

PL’ll the velocities, stresses and densities will be equal at instants of 

time which are connected by the relation: t2 = ptl. 

The possibility of this type of similarity of motion, referred to in 

some cases as simple geometrical similarity, is obviously ensured by con- 

structing relations of the model which admit the transformation (3.3) or. 
from another point of view, by the fact that the constant parameters in 

the model relations have only dimensions of density or stress. 

* The processes of heat exchange in the detonation products and between 

these products and the soil are disregarded. 
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In modeling it is necessary to bear in mind that the real motions will 
take place in a gravity field which, generally speaking, will influence 
the motion. However, in certain problems the influence of the gravity 
force may prove unimportant and then the usual difficulties associated 
with the necessity of varying the gravity acceleration forces in model- 

ing, as is required for the analogy, can be dispensed with. As an ex- 

ample, the same problem relating to an explosion will be considered. 

At the initial moment, due to the presence of gravity forces, initial 
stresses will exist in the medium, the magnitudes of which increase with 

depth in accordance with a linear law. After detonation of the charge, a 
front will propagate along the medium from its surface, which separates 
the area at rest from the area in which the medium is in motion. At the 
instant of time directly after the detonation, the area in which there 
is motion of the medium is relatively small and the stresses occurring 
therein are very considerable relative to the average initial stresses 
in this area as well as to their differences at the various points. 
Therefore, at the stage of motion under consideration, the initial 
stresses can be disregarded, and this means that at this initial stage 
the gravity forces will not have an appreciable influence. With the pro- 
gress of time, the zone in which motion takes place will increase with- 
out limits and the stresses in it will drop so that at a certain stage 
the motion will become purely elastic. However, the equations describing 
the motion at this stage (the equations of the theory of elasticity) are 
linear and, therefore, the stress fields here will represent simply the 
sum of the initial field determined by the gravity forces and the field 
of disturbances, which is the solution of the Oroblem whose mathematical 
formulation does not contain gravity forces at all. Therefore, the field 
of the disturbances will not depend on the gravity force. It is obvious 
that the velocity field in this stage will also not depend on it. Gener- 
ally speaking, in the intermediate stage of motion, the gravity force 
will have an influence. However. it can be anticipated that this stage 
will not last long and the influence of the gravity force on the motion 
as a whole will be insignificant. 

If the explosion of the charge is at a relatively small depth, the 
front of the disturbances will break to the surface even in the first 
stage of the motion, as a result of which a funnel will be formed; in 
this case the gravity force will have no influence on the motion of the 
medium or on the stress field. However, the final dimensions of the 
funnel can be influenced indirectly by the gravity force; for instance, 
in the case of considerable dimensions of the funnel a part of the 
material which is ejected from the funnel by the explosion will fall back 
into it. Experiments carried out under such conditions in various types 
of soft soils have shown that the final characteristics of the explosion 
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(volume 8nd shape of the funnel. distribution of the ground on the bank 
outside the funnel) and also some kinematic characteristics of the 
phenomenon during ejection of the soil from the funnel [14 1 I are in 
agreement with the conditions of simple geometrical analogy. All these 
experiments show that the gravity force will influence the shape and 
dimensions of the funnel only in the case of very large charges, since 
for charges weighing UP to 1000 tons this influence is small. 

Further, lsboratory experiments on the measurement of the kinematic 
characteristics of the motion of sand during explosion of small spherical 
charges in the absence of an open surface E 15,16 1 also confirm the 
validity of a simple geometrical analogy. 

Finally, our own experiments [ 17 1 on measuring directly the stress 
field during explosions in sandy soil, carried out under field conditions, 
have also shown that the conditions of simple geometrical analogy ate 
fulfilled within the range of dimensions that have been investigated. 

Thus, the existing experimental data indicate that the structure of 
the relations of the model intended for the description of the motion of 
soils should permit a simple geometrical analogy under the conditions 
described above, i.e. that these relations should not contain constant 
parameters with Dimensions that cannot be expressed by the dimensions of 
density or stress. 

The model proposed here has this property. 

4. On experimental verification af the model. The experimental results 
mentioned in the previous section indicate that the general structure of 
the relations of the model considered here is appropriate. Full experi- 
mental verification of the model requires special experiments so as to 
establish the form of the functions - the characteristics of the medium 
which enter into the relations of the model. In earlier work ! 1 I, a 
method was proposed for experimental veriffcation of the correctness of 
the plastfcity condition (1.10) assumed in the model and the determfna- 
tion of the function F(p) which is contained in this condition. 

This method reduces to the following. By detonating an explosive in 
the ground being studied, a motion is produced which has a spherical or 

a cylindrical symmetry. Due to this symmetry, the orientation of the 
principal planes of the stress field is known, and it is possible to 
measure the principal stresses at various points of the moving medium by 
means of special stress pick-ups [strain gages ‘J. As a result of the 
measurements, the complete stress tensor can be determined as a function 
of time and distance from the center or Prom the symmetry axis. Then, 
constructing from the measured components of the stress tensor the ex- 
pressions ‘Jg and p in relation (l.lO), which will also be functions of 
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time and distance from the center of the charge, and excluding time as a 
parameter, it is possible to obtain the function F, for each of the above 
distances, from relation (1.10). If the function F thus constructed is 
equal for all distances and under various geometrical conditions, i.e. 
for spherical and cylindrical symmetry, this will indicate that in real- 

ity, in the case of a developed flow in the medium, the plasticity condi- 
tions of the type (1.10) are fulfilled. Simultaneously, on the basis of 
actual experiments, the real type of the function F(p) will be determined 
for the soil under investigation. We refer in this case to distances that 

are not particularly great, at which the motion is purely elastic. 

The author, jointly with V.D. Alekseeuko, G.V. Rykov and A.F. Novgo- 
rodov, carried out experiments on the basis of this scheme in sandy soil 
during the summer of 1959, which confirmed the applicability of the con- 
dition of the type (1.10); it was established that for sandy soil under 

natural conditions the function F(p) for the case of p < 15 kg/cm2 can 
be written as [ 17 ] 

F (P) = fkp + b12 (k, b = con&) (4.1) 

For establishing the type of function from relations (1.2) and (1.3) 
(or (2.5)), the following experiment may be suggested. The specimen of 
soil to be investigated should be covered with a thin, easily bendable, 
shell which is impermeable to a liquid, and placed in a strong rigid 
vessel with a liquid of a known compressibility, so that the specimen is 
fully submerged in the liquid. BY compressing the liquid in the vessel 
by means of a piston which is hermetic at the walls, and measuring the 
pressure produced in the liquid together with the displacement of the 
piston corresponding to this pressure, it is possible to determine from 
the measured results the relation between the pressure P and the density 
of the specimen p. Indeed, the piston will produce a uniform pressure in 
the liquid. Therefore, on the surface of the solid specimen a constant 
normal stress will act, which will produce in the assumed homogeneous 
and isotropic specimen a uniform stress field which reduces to the bydro- 
static pressure P. The specimen will thus be subjected to a geometrically 
analogous deformation which will be homogeneous and isotropic so that, 
for a given pressure in the liquid, the density at all points of the 
specimen will be equal. Therefore, with the masses of the specimen and the 
liquid being fixed and the compressibility of the liquid and the deform- 

ability of the vessel under the effect of internal pressure being known, 
it is possible to calculate the density from the measured displacement 
of the piston. BY making the measurements during increasing pressure, as 
well as during decreasing pressure, it is possible to Plot the loading 
function (1.3) as well as the unloading function (1.2). 

It should be noticed that the functions in relations (1.2) and (1.3) 
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do not contain the characteristics of the deformation rates. Therefore, 
for determining these functions it is sufficient to carry out the static 
measurements just described. The assumption made in the model regarding 
the independence of the volume deformation on the deformation rate has 
to be additionally verified by experiments of one type or another. The 
experimental results considered above, which confirm fulfilment of the 
simple geometrical analogy, indicate that the velocity of deformation has 
no influence on the phenomenon as a whole and this means that, in partic- 
ular, the relations describing the volume deformation will also not de- 
pend on it. 

It should be pointed out, also, that the problem of the so-called 
“dynamic diagram” of deformation, which is sometimes discussed, has no 
meaning; in fact, if the diagrams of deformation under static and under 
dynamic conditions differ, we cannot talk about the diagram under dynamic 
conditions, since in this case the velocity of deformation does affect 
the dependence between the stresses and the deformation, i.e. under 
dynamic conditions we will have to deal not with a single diagram but 
with a family of diagrams corresponding to the various values of the in- 
variants of the tensor of the deformation rates, which in this ease will 
enter into relations that link the stresses with the strains. 

Let us consider, also, the problem of experimental determination of 
the function F(p) from condition (1.10) under static laboratory condi- 
tions. Firstly, the agreement of the function F thus determined with the 
function F determined by the dynamic method described above will be a 
further confirmation of the correctness of the assumption on the charac- 
ter of the plasticity condition. Secondly, and even more important, under 
static laboratory conditions the function F(p) can be constructed for a 
wide range of values of the argument p, including very large pressures, 
while under the described dynamic conditions such determination is ex- 
tremely difficult, since we have no means of measuring the stresses in 
the area which is near to the center of the explosion, where the highest 
stresses occur. 

Under laboratory conditions, F(p) can be determined from the following 

experiment*. Into a rigid cylinder a cylindrical specimen of the soil to 

* The experiment described here is similar to the experiment for deter- 
mining the so-called compression curves in soil mechanics [8,18,19 1 
and also experiments on the determination of the parameters of an 
oil-bearing stratum under elastic-plastic conditions 120 1; the pur- 
pose of these experiments, however, differs, 
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be investigated is placed, with its diameter coinciding with the internal 
diameter of the cylinder and height much smaller than the diameter. By 
compressing the specimen, which fits tightly into the cylinder, by a 
piston, a uniaxial strain state will be produced in the cylindrical 
specimen. There will be a deviation from the uniaxial state in the neigh- 
borhood of the lateral surface of the specimen, due to the presence there 

of friction forces on the cylinder wall. However, since the specimen has 
a small diameter-to-height ratio, this deviation from the uniaxial stress 

state, which is localized in the small layer adjacent to the wall, can 
be disregarded. By measuring the displacement of the piston and the 
pressure under the piston (or at the bottom of the cylinder) - uX, we 
can plot the relation 

6, = 0, (P) (4.2) 

Using this dependence, and also relations (1.2) and (1.3). the func- 
tion F(p) can be plotted. If the experiment is carried out with a mono- 
tonically increasing pressure, it is sufficient to use only relation 

(1.3). 

From (1.3) and (4.2) we can obtain J2 as a function of p: 

Ja = + (bx + PI2 = Ja (P) (4.3) 

Excluding from Equations (1.3) and (4.3) the Parameter p, we obtain a 
relation between J2 and p 

Ja = Ja (PI (4.4) 

At the initial stage of the experiment, when the volume and the shear 
deformation are both elastic, the following linear relations will apply: 

P=40, ox = Be, Ja = cez (e = 1 - P,/P). (4.5) 

where p,, is the initial density and A, B, C are constants which are ex- 
pressed by means of the elastic constants of the medium. Therefore, at 
this stage relation (4.4) will coincide with the following relation de- 
rived from (4.5): 

Jz = 
C 

z P2 (4.6) 

On further increase of p (or 8). the limit of elasticity will be ex- 
ceeded both in volume and shear deformation in either order, depending 
on the properties of the medium. If the expression 8 = e(p) is substi- 
tuted in the last of relations (4.5). obtained by transforming (1.3), 
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we arrive at a relation between J2 and p which will coincide with (4.4) 
when the limit of elasticity in shear is not exceeded. After exceeding 
this limit, these functions will differ, and from that instant onwards 
the function (4.4) can be considered as the desired function F(p). 

Similar considerations also apply to the case of the experiment with 
unloading from various states of compression. 

Finally, another fact should be pointed out which is of paramount im- 
portance. If relation (1.3) is expressed in terms of the variables p and 
8, in accordance with the model, a curve will be obtained which possesses 
the following properties (see Fig. 1). For small values of p, the curve 
will have a straight elastic section, then it will be convex upwards. 
will reach an inflection point and, finally, after becoming convex from 
below, it will rise steeply upwards. On the basis of these geometrical 
properties of the compression diagram of the medium, it is possible to 
determine the character of the changes of the profiles of the waves of 
stresses, velocities, etc. which occur, for instance, as a result of de- 
tonation of a spherical explosive charge in the unbounded medium. 

In his paper Barenblatt [21 I has studied self-similar (non-interact- 
ing) plane, one-dimensional motions of a non-linear-elastic medium, the 
diagram of which may possess the above-mentioned geometrical properties. 
It was established that if a sufficiently large constant Pressure is 
applied to the boundary of a semi-space, a disturbance wave will ProPa- 
gate along the medium which is limited in the forward direction by a sharp 
front, i.e. a shock-wave. In the case of moderate values of this pressure. 
the speed of the shock-wave is relatively small so that in front of it a 
region of continuous motion will occur and the forward boundary of the 
disturbance will appear as a weak discontinuity, i.e. a characteristic. 
Finally, beginning from the value of the applied pressure that corre- 
sponds to the inflection point in the diagram, and even for smaller 
values, the disturbance will become a continuous wave, which is limited 
in the forward direction by the characteristic. 

Considering the problem on the change of form of the disturbance 
caused by a concentrated detonation in the medium under consideration, 
it can be shown that all the qualitative types of disturbance waves de- 
scribed above will occur, with successive replacement of one type of 
wave by another. To wit, in the zone near to the charge, where the 
stresses are high, disturbances will propagate which are limited in the 
forward direction by the shock-wave. As this wave recedes from the 
charge, it will decay, and its velocity will decrease. At some instant 
its velocity will be less than the velocity of propagation of elastic 
disturbances which correspond to the initial section of the diagram, so 
that elastic motion will occur in front of the pressure-wave. Then, a 
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time will come when the pressure-wave will vanish, the motion will be- 
come fully continuous and, finally, there will be a purely elastic wave 
which, with the progress of time, will recede without limits from the 
center of the explosion. 

We have carried out special experiments for verifying the described 
character of the development of disturbance waves resulting from an ex- 
plosion with the progress of time. The experiments fully confirmed the 
effects anticipated [ 17 I. 

We note that in a highly idealized formulation, the problem of explo- 
sion considered here was recently studied by Zvolinskii [22 1. His work 
also revealed all the stages of development of the disturbances described 
here. 

Experimental confirmation of the described qualitative feature of the 
disturbance, which can he predicted theoretically on the basis of the 
geometrical properties of the diagram of volume deformation, proves that 
this diagram does actually possess such properties. 

In conclusion, I should like to thank G.I. Barenblatt for his atten- 
tion to and interest in this work. 
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